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Astrocytes are highly ramified glial cells found throughout the

central nervous system (CNS). They express a variety of

neurotransmitter receptors that can induce widespread

chemical excitation, placing these cells in an optimal position to

exert global effects on brain physiology. However, the activity

patterns of only a small fraction of astrocytes have been

examined and techniques to manipulate their behavior are

limited. As a result, little is known about how astrocytes

modulate CNS function on synaptic, microcircuit, or systems

levels. Here, we review current and emerging approaches for

visualizing and manipulating astrocyte activity in

vivo. Deciphering how astrocyte network activity is controlled in

different physiological and pathological contexts is crucial for

defining their roles in the healthy and diseased CNS.
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Introduction
The adult human brain contains roughly equal numbers

of neurons and glial cells [1,2]. Historically, it was be-

lieved that there was a clear division of labor among these

two cell classes, with glia relegated to performing sup-

portive roles to ensure that neuronal activity can be

sustained. In the last few decades, our knowledge about

the diverse roles played by different glial cell types has

expanded dramatically, and it is now clear that they can

exert a profound influence on neuronal synaptic plastici-

ty, excitability, and behavior. Among glial cells, astrocytes

are in a unique position to modulate brain activity.

They are ubiquitous in all gray and white matter regions

[3], they express receptors for neurotransmitters, and

they extend highly ramified processes that interact with
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synapses, nodes of Ranvier, blood vessels, and many other

CNS elements. Astrocytes also exhibit structural and

functional dynamics on spatial and temporal scales that

span several orders of magnitude (from micrometers to

millimeters and from milliseconds to weeks). Measuring

their dynamics and relating these events to distinct CNS

functions remains a significant challenge, requiring de-

velopment of a wide range of techniques to monitor and

manipulate their local and global activity patterns in vivo
in both physiological and pathological contexts.

In this review, we focus on current and emerging

approaches for measuring the activity of astrocytes at

the synaptic, microcircuit, and systems levels. Although

most of our insight into the physiology and function of

astrocytes has come from in vitro studies (primary cul-

tures, acute brain slices), emphasis here has been placed

on techniques that enable visualization of their dynamics

in the intact CNS of live animals, and insights that have

been obtained from these studies. We conclude by dis-

cussing current technical challenges that need to be

overcome to obtain a mechanistic understanding of the

many roles of astrocytes in brain function.

Astrocytes in neural circuits
Astrocytes indifferent regions of the CNS share a numberof

common features — they have a high resting conductance

to potassium and low membrane resistance, they are elec-

trically unexcitable and lack synaptic specializations and

long-range projections, theyare extensively coupled toeach

other through gap junctions, they express a high density of

glutamate transporters, they form end feet specializations

on blood vessels, and they express G-protein coupled

receptors that liberate intracellular calcium. Individual

astrocytes also establish and maintain distinct territories,

defined by their numerous, highly ramified processes, with

adjacent cells occupying largely non-overlapping domains

in rodents [4–6] (Figure 1d,e). Thin lamellae extend from

their processes to wrap neuronal and non-neuronal struc-

tures [7], giving rise to their extraordinarily complex mor-

phology (Figure 1f–h). At the tips of their processes they

connect to each other through gap junctions; as a result,

astrocytes form a vast network of interconnected cells,

providing nearly complete coverage of the CNS.

Despite these shared characteristics, astrocytes are not

homogenous. For example, fibrous astrocytes in white

matter have processes that are more polarized and less

complex than protoplasmic astrocytes, their gray matter

counterparts, and astrocyte density varies between CNS

regions and cell layers [8]. In addition, the complement of

receptors and transporters expressed [9] and the extent of
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gap junction coupling varies between different regions of

the CNS [10], suggesting that they can adapt to the unique

requirements of their local environment. Some physiologi-

cal features, such as gap junction coupling [11], glutamate

transporter expression [12], and synapse ensheathment

[13] can be modulated on rapid time scales by neuronal

activity, while aging and pathological conditions can in-

duce slower but more dramatic phenotypic changes (e.g.,

reactive astrocytosis) [14]. These structural and functional

alterations at the synaptic, microcircuit, and systems level

[15��,16,17,18], are believed to help organisms adapt to

new environmental demands, and conversely, disturbances

in this homeostatic adaptation are likely to contribute to

CNS disease [19].

Different scales of astrocyte functional
dynamics
Astrocyte networks are particularly well positioned to

integrate both neuronal and non-neuronal signals to reg-

ulate diverse CNS functions, such as neural network

excitability and metabolism, on various spatial and tem-

poral scales [20,21��]. In particular, astrocytes express a

rich repertoire of G-protein coupled receptors for neuro-

transmitters, and in some regions, ligand-gated ion chan-

nels (NMDA and AMPA receptors), providing a means to

modulate their physiology in response to local neural

activity and global shifts in brain states. However, little

is known about the types of information that astrocytes

extract from these events or how astrocytes use this

information to modify their behavior.

Although astrocytes express ligand-gated and voltage-gat-

ed ion channels, receptors, and electrogenic transporters,

they do not exhibit large deviations in membrane potential

in response to neuronal stimulation [22], due to their low

resistance and high conductance to potassium, which

effectively clamps their membrane potential at the potas-

sium equilibrium potential. As a result, astrocyte activity

has been largely invisible to electrophysiological methods,

such as extracellular unit recording, that are used to

monitor neuronal activity in vivo. The development of

fluorescent indicators for calcium that can be loaded into

cells led to the discovery that astrocytes exhibit dynamic

changes in intracellular calcium [23,24] that are markedly

enhanced by neurotransmitters. Distinct forms of calcium

signaling have been described that involve activation of

calcium-permeable plasma membrane channels and/or

release of calcium from internal stores [25,26]. These

astrocyte calcium transients are widely considered to be

a form of glial excitability, but they do not exhibit a

stereotyped waveform like action potentials, and thus

the functional outcomes of this activity are likely to be

more diverse and nuanced. Although it is certain that

elevations in calcium are not the only form of activity

exhibited by astrocytes, the ability to detect these changes

has provided key insight into astrocyte dynamics and

neuron–astrocyte interactions in vivo.
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Microdomain activity

Astrocytic processes exhibit spatially confined (less than a

few micrometers in diameter) calcium transients with an

average duration of a few seconds [27,28] (Figure 2a,b); in
vivo, this activity may be confined due to structurally

isolated regions within the astrocyte arbor, termed micro-

domains. Microdomain activity has been observed in both

anesthetized and awake animals and persists when neural

activity and most, if not all, neurotransmitter receptors

have been blocked, and is therefore thought to be intrin-

sically generated [29–31]. Moreover, activity in different

microdomains is largely uncorrelated in the absence of

stimulation [27,30], but can be synchronized when sur-

face receptors are activated. However, because only a

small region of the astrocyte, and thus only a tiny fraction

of microdomains in a given cell, can be measured within

the focal plane of a two-photon microscope, which is the

predominant tool for monitoring astrocyte calcium signal-

ing in vivo, a complete picture of their diversity and

spatiotemporal evolution (i.e., in the z-direction) is lack-

ing. Additionally, given the limited spatial resolution of

two-photon microscopy much of the fine-scale dynamics

of microdomain activity have not been resolved.

Somatic activity

In addition to spatially localized microdomain activity,

astrocytes exhibit pronounced somatic calcium transients,

particularly when animals experience strong sensory in-

put or when astrocytes are directly stimulated with neu-

romodulators (Figure 2a,b,d). These somatic events result

from IP3-mediated release of calcium from internal stores

[32�,33�], are less frequent and exhibit somewhat slower

kinetics than microdomain events [34,35�]. Both neuronal

activity-dependent and activity-independent transients

have been described, with the frequency and degree of

temporal correlation depending on brain region [30,36].

Although it is tempting to speculate that activity in

microdomains, like synaptic events in neurons, summate

to produce somatic events if a threshold is exceeded, the

precise functional relationship between microdomain ac-

tivity and somatic events has not yet been established.

Sensory-evoked activity in astrocytic somata tends to be

sparse, variable, and stimulus-dependent [37,38��,39].

Due to tissue scattering and absorption, a lack of efficient

long-wavelength calcium indicators, and technical chal-

lenges associated with imaging large tissue volumes,

optical recording of large-scale astrocyte (somatic) activity

is currently limited to a few hundred micrometers be-

neath the pial surface and relatively low (a few Hz)

sampling rates. Thus, the relationship of these local

events to neuronal and glial cell activity in other brain

regions remains largely unexplored.

Localized multi-cellular waves of activity

Cortical cerebellar astrocytes (termed Bergmann glia)

exhibit radially-expanding, ATP-dependent calcium

waves that engage groups of astrocytic microdomains
www.sciencedirect.com



Large-scale recording of astrocyte activity Nimmerjahn and Bergles 97
within an ellipsoid volume tens of micrometers in diam-

eter around their focal site of origin [31,40] (Figure 2c).

This activity is reminiscent of the intercellular ‘calcium

waves’ that can be induced in cultured astrocytes upon

focal application of glutamate or mechanical stimulation

[23,24,41]. These calcium waves depend on calcium

release from internal stores, have an average duration

of only a few seconds, appear to be independent of

sensory input, and occur in both anesthetized and awake

animals. Their frequency is low (tens to hundreds of

mHz/mm2) but may increase with age and reductions

in tissue oxygen tension [42]. Differences in tissue prep-

aration may contribute to the variable incidence of these

events, as less invasive procedures show seemingly fewer

and spatially less clustered events. Hence, the mecha-

nisms that induce the release of ATP from astrocytes and

the functional role of these multi-cellular calcium waves

remains to be determined. Notably, this activity is rarely

observed in the cerebral cortex [30,38��,43�] (but see

[44]). In vitro, calcium wave propagation requires repeti-

tive release of ATP and sequential activation of P2Y

purinergic receptors as the wave spreads outward

[45,46]; although gap junctions can modulate the speed

and extent of propagation, they are not required. The

smaller spread of these waves in vivo may reflect a higher

abundance of extracellular nucleotidases, enzymes which

hydrolyze ATP to adenosine.

Large-scale concerted activity

Two-photon imaging in primary somatosensory and an-

terior cerebellar cortex of head-restrained, mobile mice

revealed that astrocytes show behavioral state-dependent

and neuronal activity-dependent concerted calcium

increases across areas several hundred micrometers in

diameter with an average duration of many seconds

[31,44] (Figure 2d,e). These concerted transients, which

involve most, but perhaps not all astrocytes or astrocytic

processes, also appear to depend on calcium release from

internal stores. Their amplitude and probability of occur-

rence depends on inter-stimulus interval [31,38��], per-

haps resulting from receptor desensitization or calcium

store depletion. This large-scale calcium activity in astro-

cytes can be initiated by aversive stimuli [38��,43�],
locomotion [31,38��], or direct stimulation of the nucleus

basalis [32�] where cholinergic neurons are located, or

locus coeruleus [47], where noradrenergic neurons are

located. Using fiber photometry, which allows bulk but

not cellular-level measurements, [38��], it was shown that

concerted astrocytic calcium increases were synchronized

across anterior cerebellar and primary (V1) visual cortices

(Figure 2e). Thus, it appears that different neuromodula-

tory inputs can trigger widespread activation of astrocytes,

in keeping with the diffuse, highly ramified nature of these

projections. This study also reported that while visual

stimulation alone was ineffective in evoking concerted

astrocytic calcium responses in V1 of awake, resting mice,

calcium transients in astrocytes were enhanced beyond that
www.sciencedirect.com 
produced by locomotion alone when visual stimuli were

applied during locomotion, suggesting that norepinephrine

can alter the responsiveness of astrocytes to local circuit

activity. Visual stimuli-independent but locomotion-en-

hanced activity has also been described for cortical neurons

(e.g., vasoactive intestinal peptide-positive V1 neurons,

though in their case nicotinic inputs from basal forebrain

were identified as the anatomical source of neuromodula-

tion [48]). Although these studies suggest that widespread

activation of astrocyte networks occurs when neuromodu-

lators are released, the full three-dimensional extent of

large-scale concerted astrocytic activity and its relationship

to neuromodulatory projections and local neural network

activity remains unknown. Approaches providing increased

fields of view or simultaneous multi-site imaging, greater

depth penetration, and fast volume sampling, would help

define the patterns of astrocyte activity induced by neuro-

modulators in different behavioral contexts.

There is increasing appreciation that astrocytes in differ-

ent regions of the CNS exhibit different functional char-

acteristics [49]; for example, astrocytes in the cortex have

been shown to express NMDA receptors [50], while those

in the hippocampus do not appear to [22]. However, the

pattern of activity exhibited by astrocytes in vivo in

regions other than the superficial cortical layers remains

largely unexplored. Long-wavelength multi-photon mi-

croscopy [51–53], which experiences less light attenua-

tion, in combination with red-shifted calcium indicators,

sparse tissue labeling, and adaptive optics approaches,

which correct for tissue-induced wavefront distortions,

will allow minimally invasive optical recordings from

deeper brain regions. However, imaging depth is ulti-

mately limited by fluorophore brightness, out-of-focus

background fluorescence generation, the objective/detec-

tor’s limited light collection angle, and other factors [54].

Optical recording from brain regions beyond the imaging

depth limit has been achieved by aspirating overlying

tissue, implanting a biocompatible tissue-stabilizing

transparent gel or glass window-bearing guide tube,

and imaging with a long working distance objective or

gradient index (GRIN) lens [55–57]. Alternatively, opti-

cal components such as micro-prisms can be implanted

directly into the brain to deliver and capture light [58].

Although these approaches have yielded new insight into

the relationship between neural activity and behavior

[55,56,59], they may be ill-suited for the study of normal

astrocyte activity. Astrocytes are highly sensitive to tissue

damage, and exhibit widespread and prolonged structural

and functional changes following CNS injury [14,60].

Approaches that induce less inflammatory responses or

can image far beyond the glial scar are needed.

Another largely unexplored issue is whether astrocyte

activity patterns change over the course of hours, days,

or weeks in response to changes in life experience. Long-

term imaging studies in cortical and deep brain regions of
Current Opinion in Neurobiology 2015, 32:95–106
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Figure 1
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Astrocyte complexity across spatial scales and species. (a) Astrocytes are found in both vertebrate and invertebrate species, and their size

and complexity increases with phylogeny (b). (b) Computer drawings show three-dimensional (3D) reconstructions of mouse (left) and human

(right) cortical astrocytes based on glial fibrillary acidic protein (GFAP) immunostaining. Note that GFAP-positive filaments are restricted to

the cell body and main processes of astrocytes, representing only a small fraction (�15%) of the cell’s actual volume. Cortical astrocytes

with different morphologies are present in the human brain (not shown), suggesting that greater diversification has occurred with evolution.

(c) Brain size changes with phylogeny. Because scattering and absorption restrict fluorescence imaging depth, a smaller proportion of

astrocytes can be visualized in the larger brains of higher organisms in vivo. (d) Fluorescence image shows cross-section through the cortex

of a ‘Brainbow’ mouse, in which three different fluorophores were expressed stochastically in astrocytes. Dark round areas represent

primarily neuronal cell bodies, illustrating the extraordinary coverage of the CNS by astrocytes. In a given brain region, astrocytes are

extensively coupled through gap junctions. (e) Image shows 3D reconstruction of four dye-filled astrocytes in mouse dentate gyrus. Within

gap junction-coupled networks, individual astrocytes (green or red) occupy distinct territories that exhibit minimal overlap (yellow) with those

of neighboring astrocytes. (f) Image shows 3D reconstruction from electron microscopy data of four dendrites (red, yellow, gold, purple) and

protrusions of a nearby astrocytic process (blue) in rat hippocampus. Processes of individual astrocytes exhibit highly intricate lamellar protrusions.

Current Opinion in Neurobiology 2015, 32:95–106 www.sciencedirect.com
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behaving mice have revealed complex learning-related

changes in neuronal activity patterns, such as enhanced

temporal correlation of activity among neurons that re-

spond to similar aspects of a learned task [61], increases in

task-related population activity despite variable single-

neuron responses [62], and neuron type-dependent and

layer-dependent changes in ensemble activity across trials

[63,64]. Given the close interrelationship between astro-

cytic and neuronal activity, changes in the spatiotemporal

excitation patterns of astrocytes may also occur following

training, as a consequence of the change in activity pat-

terns of nearby neurons or as a result of intrinsic adaptive

changes. Indeed, recent studies suggest that secretion

from astrocytes can alter ensemble neuronal network

activity such as gamma oscillations [65��] and influence

cyclical behaviors such as sleep [66,67] (but see [68�,69]).

The development of new transgenic mouse lines in

which genetically encoded calcium indicators (GECIs)

can be expressed stably in astrocytes will help to define

astrocyte network activity on more prolonged time scales

[35�,38��,70�,71], and enable simultaneous optical moni-

toring of astrocyte and neuronal activity through cell-

specific expression of different-colored GECIs [72,73].

Although we do not yet know if or how learning alters

astrocyte activity patterns, it is clear that calcium signal-

ing in astrocytes is not static. Evolving changes in the

spatiotemporal activity patterns of astrocytes have been

observed in many diseases and following traumatic injury

to the CNS [74]. For example, astrocytes in mouse

models of Alzheimer’s disease exhibit higher resting

calcium levels, a higher frequency of calcium transients,

and intercellular waves that propagate outward from

amyloid deposits [75]. In ischemic stroke, astrocytes at

and near the lesion site show larger amplitude, higher

frequency, and more synchronized, calcium wave-like

activity during the acute phase [76]; changes in astrocytic

calcium responses were also seen in the contralateral

hemisphere [77], suggesting that their activity can be

altered without direct injury. In addition, astrocytes show

region-dependent structural changes during early and late

post-ischemic phases [78,79]. Similarly complex structur-

al and functional alterations are seen in other cell types

[80–82]. However, most of these cellular-level changes

in astrocytes have been recorded in cortical areas and repre-

sent between-animal comparisons, rather than longitudinal

studies of the transformation of individual astrocytes.

Although long-wavelength and multi-site multi-photon im-

aging approaches are likely to increase the depth and area

that can be monitored in the future, large parts of the

affected tissue will remain inaccessible with these
(Figure 1 Legend Continued) (g) and (h) Astrocytic protrusions contact som

indicated in (f). (d–h) Note that images are snapshots taken at a particular poi

plastic in the adult brain. See text for more details. (a–b), (f–h) adapted from [1

(c) Courtesy of Dr. Frank Hirth, King’s College London. (d) Courtesy of Jean L

from [5] with permission from Nature Publishing Group. (e) Reprinted from [13
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high-resolution techniques. One way to bridge this gap is

to combine high-resolution imaging with lower-resolution,

whole-tissue imaging approaches [82,83,84��], allowing

cellular level observations to be related to systems level

changes and behavioral phenotypes.

Defining the role of astrocytes in neural
networks
Although fluorescent indicator imaging has revealed the

remarkable diversity of astrocyte activity patterns in

intact circuits, much remains to be learned about the

pathways involved in generating various forms of astro-

cytic excitation, and their downstream functional conse-

quences for astrocytes (e.g., acute metabolic regulation or

long-term gene expression changes), and for surrounding

neuronal and non-neuronal cells (e.g., neuronal excitabil-

ity or blood flow changes).

To bridge this gap in our understanding, a variety of in
vivo approaches are being employed to interrogate and

manipulate astrocyte activity in healthy animals. For

example, in vivo pharmacology has revealed that some

forms of excitation, particularly spatially localized events

within astrocytes, do not depend on neuronal activity, and

for the ones that do, the signaling pathways that contrib-

ute to their generation [31,38��,43�]. In addition, trans-

genic approaches have shown that large-scale, correlated

activity in astrocyte networks rely on IP3-mediated re-

lease of calcium from internal stores as a result of G-

protein coupled receptor activation [32�,33�,85]. They

have also provided evidence that calcium excitation

can lead to local neuromodulatory effects and changes

in animal behavior [65��,67,70�]. Transgenic manipula-

tion is not always possible or practical; thus, development

of approaches to acutely alter gene expression in astro-

cytes, such as viral infection [17] or in utero electropora-

tion [86] provide additional opportunities for mechanistic

studies of astrocyte functions in vivo.

Nevertheless, interrogating the behavior of astrocytes and

defining the consequences of their activity in live animals

remains challenging. For example, with in vivo pharma-

cological experiments it is difficult to control the concen-

tration and sites of influence, limiting conclusions that can

be made regarding the receptors and intracellular path-

ways involved in a response. Additionally, given our

limited knowledge about in vivo drug actions [87] and

the expression of receptors in other cell types [88,89],

pharmacological interventions may lead to unexpected

side effects (e.g., affect ion channel surface expression

[90]). Exogenous fluorescent indicators can themselves
e but not all neuronal boutons or spines. Images are blow-ups of regions

nt in the animal’s life. Astrocytes remain structurally and functionally

07,130,131] with permission from Elsevier, and John Wiley and Sons.

ivet, Joshua Sanes and Jeff Lichtman, Harvard University, and adapted

2], copyright (2006) National Academy of Sciences, U.S.A.
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Figure 2
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Representative forms of astrocytic calcium activity in the adult brain. (a) Spontaneous calcium activity in astrocytic processes and soma. Left,

image shows a GCaMP3-expressing astrocyte in stratum lucidum of a mouse hippocampal slice. Right, calcium transients detected in the

numbered regions of interest (ROIs) shown at the left. (b) Sensory-evoked calcium activity in astrocytic processes and somata in vivo. Top left,

schematic of experimental setup. Right, time-lapse images showing GCaMP5G-expressing astrocytes in layer 2/3 of barrel cortex from an

anesthetized mouse. Time after onset of whisker stimulation (W.S.; 5 Hz, 30 s duration) is shown in top right corners. Pseudocolor scale on right

indicates changes in GCaMP5G fluorescence over baseline (DF/F0). Bottom left, time course comparison of evoked calcium transients in astrocytic

processes (red) and somata (orange) from regions indicated on the right. (c) Spontaneous, localized multi-cellular calcium waves/bursts in portions

of few neighboring cortical cerebellar astrocytes (Bergmann glia) in vivo. Left, fluorescence image showing optical cross-section through

processes from many different astrocytes in the molecular layer of cerebellar cortex from an anesthetized rat stained with synthetic calcium

indicator Fluo-5F. Center, time-lapse images showing spatiotemporal evolution of a multi-cellular calcium wave, displayed as DF/F0, at a select

imaging depth. Time after event onset is indicated in top right corners. Right, volumetric profiles of individual calcium waves/bursts (shown in the

same color) detected by 3D two-photon microscopy during an 8.2 min imaging period. (d) Locomotion-evoked calcium transients in astrocytes of

the visual cortex (V1) in vivo. Black and white image, fluorescence image of layer 1 astrocytes in primary visual cortex (V1) of a GLAST-

CreER;R26-lsl-GCaMP3 mouse. Color images, spatiotemporal evolution of concerted astrocytic calcium activity. Time after onset of walking on a

linear treadmill is indicated in top right corners. (e) Locomotion-evoked large-scale calcium activity in populations of astrocytes from two distinct

brain regions, measured simultaneously using dual fiber-optic photometry. Black traces show DF/F0 in GCaMP3 bulk fluorescence from astrocytes

in indicated brain regions. Green shows locomotor activity and rest as detected by an optical encoder coupled to the linear treadmill; periods of

enforced locomotion are highlighted by the horizontal green bars and vertical green-shaded areas. Red trace shows simultaneously recorded

electromyography (EMG; given as fold increase in 200 Hz–1 kHz EMG power). (a–e) Note that kinetics, amplitude and frequency of detected

calcium transients may depend on employed fluorescence indicator or staining method. See text for more details. (a–e) Adapted from

[31,34,35�,38��,40] with permission from Elsevier and National Academy of Sciences.
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influence optical recordings: insufficient indicator may

lead to the erroneous conclusion of inactivity, while

surplus indicator may compromise normal astrocytic func-

tion by chelating calcium [91]. In addition, transgenic

approaches, particularly those involving constitutive

expression of transgenes [92], may lead to whole-brain

or whole-animal disturbances, making it difficult to relate

local changes in astrocytic activity to altered microcircuit

function or behavioral phenotypes [93,94�]. Chemoge-

netic approaches, such as those involving DREADDS or

optogenetic approaches, such as those which utilize chan-

nelrhodopsin or light-responsive G-protein receptors [95],

have been effective at delineating the contribution of

different classes of neurons and neural networks to be-

havior. At present, it is unclear whether the collection of

genetically encoded effectors currently available will be

similarly useful in defining the role of astrocytes or

whether further modification or development of new

effectors will be required; there is concern that these

proteins may only partially engage endogenous signaling

cascades (e.g., through pharmacological activation of for-

eign receptors expressed in astrocytes), cause inadvertent

shifts in ion gradients (e.g., promote proton influx through

channelrhodopsin) or insufficiently mimic normal spatio-

temporal forms of astrocytic excitation (e.g., by recruiting

pathways only active under high levels of calcium, or by

inhibiting normal cell signaling in the aftermath of con-

certed calcium store depletion). The mode of gene deliv-

ery can also lead to problems. In particular, viral vectors can

induce inflammatory responses that may affect astrocyte

morphology or function directly or indirectly (e.g., through

microglia-mediated chemokine release) [96], and all

Cre-ER mouse lines used to manipulate gene expression

in astrocytes (e.g., GLAST-CreER, GFAP-CreER, Cx30-
CreER) also influence radial glial cells, leading to altered

gene expression in neurons within the dentate gyrus and

the olfactory bulb, which are continually generated from

radial glia in adulthood. Finally, imaging itself can lead to

phototoxic effects that may influence the frequency and

form of astrocytic excitation [37], and surgical preparation,

such as thinning or removing the skull overlying the

imaging site, can induce reactive gliosis [97,98].

Similar challenges exist for studying the role of astrocytes

in disease. For example, optogenetic manipulation of

astrocyte activity following ischemic stroke induces ion

and transmitter level alterations that reduce brain damage

[99]. However, due to tissue scattering and absorption,

such optical approaches are currently limited to compar-

atively small tissue volumes. In addition, optical accessi-

bility may change over time due to tissue swelling,

neovascularization, or glial scar formation. Likewise, as-

trocytic gene expression and morphology may change

over time [100] potentially affecting the specificity of

genetic targeting and pharmacological interventions. De-

velopment of red-shifted calcium indicators [72,101] and

opsins [102,103], more efficient and less inflammatory
www.sciencedirect.com 
viral vectors [96], more specific Cre/CreER mouse lines to

manipulate distinct populations of astrocytes using infor-

mation gained from gene expression analysis [89,104��],
will alleviate some of these issues and help resolve

existing controversies in the field.

Astrocytes in different species
Astrocytes have evolved with phylogeny (Figure 1a).

Human astrocytes, as defined by GFAP expression, are

larger, structurally more complex, and contact many

(around one order of magnitude) more synapses than their

rodent counterparts [105] (Figure 1b). In addition, they

show differences in calcium signaling. Humans and pri-

mates also exhibit types of astrocytes not found in rodents

(e.g., interlaminar astrocytes whose processes traverse

several cortical layers) [3,105]. Likewise, rodent astrocytes

are larger, more complex, and functionally different from

their fish, fly, or worm counterparts. Some of these differ-

ences appear to be cell autonomous, as human glial pro-

genitors transplanted into the mouse brain develop into

astrocytes and retain their larger size and more complex

morphology [106]. Such xenographs may provide a means

to study the unique characteristics of human astrocytes in

an in vivo context. Despite the differences, many astrocyte

signaling pathways appear conserved across species [107],

similar to neural circuitries and adaptive behaviors [108]. In

addition to their accessibility to genetic manipulations,

organisms such as C. elegans, Drosophila, zebrafish, and mice

have the distinct advantage of reduced size and complexity

(Figure 1b,c), making them amenable to large-scale imag-

ing of cellular networks. For example, recent studies in

head-immobilized, optically transparent zebrafish larvae

demonstrated the feasibility of whole-brain imaging with

single-cell spatial and up to tens of Hertz temporal resolu-

tion using light sheet [109], or light field microscopy [110],

and large-scale data analysis [111]. A similar analysis of

astrocyte-like/astroglial cells and networks in the zebrafish

brain [112] remains to be performed.

Conclusions
Astrocytes form a complex network of highly ramified,

interconnected cells that are common to all regions of the

CNS. Like neurons, they express many distinct classes of

cell surface receptors and exhibit a form of excitability

based on changes in intracellular calcium. Understanding

how astrocytes detect and respond to changes in their

environment, and ultimately influence other neuronal

and glial cell populations, remains an ambitious, but

achievable goal. Many approaches that have initially been

developed to interrogate neuronal networks have been

readily adopted by glial biologists, such as in vivo two-

photon imaging and genetically encoded calcium indica-

tors. However, the study of astrocytes presents many

additional challenges — their activity is potently inhib-

ited by anesthesia, they undergo dramatic morphological

and physiological changes following CNS injury, and they

do not exhibit stereotyped electrical activity akin to
Current Opinion in Neurobiology 2015, 32:95–106
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action potentials. Moreover, the simple addition of calci-

um indicators, which are themselves calcium buffers, and

the act of illuminating tissue to visualize fluorescence

changes, can markedly alter the state of astrocyte activity.

Uncovering their full range of spatiotemporal activity

patterns, particularly in behaving animals and animal

models of human disease, will require the development

and application of new imaging approaches that extend

the depth of imaging, enhance the imaging area, report

the activity of distinct signal transduction pathways, and

enable visualization of astrocyte activity simultaneously

with that of neurons, glia, and vascular cells. Relating

their widely varying forms of activity to synaptic, micro-

circuit, and higher-order function will require combining

large-scale imaging techniques with large-scale in vivo
staining, manipulation, network anatomical, genomic,

and computational approaches. Although some of these

complementary tools exist, others will need further or

new development for use with astrocytes. For example,

while an ever-growing list of optogenetic approaches

enables precise manipulation of electrical activity and

protein function in genetically defined neurons and their

compartments [95,113–116], a comparable list of tools for

precise spatiotemporal control of astrocyte function is

largely lacking [117]. Likewise, optical approaches for

three-dimensional control of cellular activity patterns are

in their infancy [118–121]. There is perhaps undo em-

phasis being placed on calcium signaling at the present

time, reflecting, in part, the tools available to monitor this
Box 1 Selection of unresolved biological questions

Synaptic level

� How are frequency, duration, spatial and temporal pattern of

synaptic activity encoded in the time course and spatial extent of

astrocytic calcium activity [20]?

� Do astrocytic microdomains contain functionally independent

compartments, similar to dendritic spines [124]?

� How do astrocytes functionally respond to diverse spatiotemporal

inputs from different cell types (e.g., excitatory or inhibitory

neurons, oligodendrocytes or microglia)?

� To what extent do microdomain events summate to trigger

somatic calcium transients?

Microcircuit level

� How functionally independent are individual astrocytes in local gap

junction-coupled networks?

� What is the relationship between astrocytic calcium excitation and

natural activity patterns in neuromodulatory projections from

different anatomical sources in behaving animals?

� How do the distinct forms of astrocytic calcium transients

influence astrocytic gene expression, their physiological proper-

ties, gap junction coupling, or morphology [125]?

� How are astrocytes’ spatiotemporal activity patterns linked to

regional differences in gene expression profile [126–129]?

� What role does astrocyte network activity play in regulating

network function/homeostasis in healthy and diseased animals

[21��]?

Systems level

� How do large-scale systemic changes (e.g., circadian rhythm/

sleep or aging) influence astrocytic activity and effector function?

Current Opinion in Neurobiology 2015, 32:95–106 
behavior, but it is clear that astrocytes express receptors

that couple to signaling pathways that do not directly alter

intracellular calcium. Our knowledge about the role of

these forms of signaling is very limited. Nevertheless,

existing approaches have already begun to provide excit-

ing new insight into how astrocytes participate in physio-

logical functions such as sleep, breathing, feeding, and

metabolism, and pathological processes associated with

stroke, CNS trauma, and diseases such as epilepsy and

Huntington’s disease [19,21��,122,123].

Decoding how astrocytes integrate information from var-

ious cell types, adapt their behavior, and modulate brain

physiology will further our understanding of how homeo-

stasis and neuromodulation are achieved in the CNS, and

reveal new therapeutic directions to treat complex dis-

eases. Although much remains to be discovered about

their diverse functions, it is clear that astrocytes are true

stars in the complex CNS universe (Box 1).
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Scheller A, Le Meur K, Götz M, Monyer H et al.: Bergmann glial
AMPA receptors are required for fine motor coordination.
Science 2012, 337:749-753.

This study reports that genetic deletion of AMPA-type glutamate recep-
tors (GluA1/GluA4) from cerebellar astrocytes (Bergmann glia) results in
retraction of astrocyte processes from neuronal synapses, leading to
enhanced excitatory synaptic currents in Purkinje cells. These mice show
impairments in fine motor coordination, as determined by locomotion
conditioning on an Erasmus ladder, but no alteration of Pavlovian eyeblink
conditioning.

16. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J,
Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K et al.: Leptin
signaling in astrocytes regulates hypothalamic neuronal
circuits and feeding. Nat Neurosci 2014, 17:908-910.

17. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S,
Miwa A, Takayasu Y, Saito I, Tsuzuki K et al.: Glia-synapse
interactions through Ca2+-permeable AMPA receptors in
Bergmann glia. Science 2001, 292:926-929.

18. Zhang Y, Barres BA: Astrocyte heterogeneity: an
underappreciated topic in neurobiology. Curr Opin Neurobiol
2010, 20:588-594.

19. Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC,
Rempe D, Rodriguez JJ, Nedergaard M: Neurological diseases
as primary gliopathies: a reassessment of neurocentrism. ASN
Neuro 2012, 4:e00082.

20. Volterra A, Liaudet N, Savtchouk I: Astrocyte Ca2+ signalling: an
unexpected complexity. Nat Rev Neurosci 2014, 15:327-335.

21.
��

Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R,
Volterra A: Gliotransmitters travel in time and space. Neuron
2014, 81:728-739.

This is an excellent in-depth review of the role of astrocytes in central
nervous system function. In particular, the authors discuss how astro-
cytes in the brain can act as integrators of cellular activity to modulate
network function on spatiotemporal scales distinct from neurons.

22. Bergles DE, Jahr CE: Synaptic activation of glutamate
transporters in hippocampal astrocytes. Neuron 1997, 19:1297-
1308.

23. Nedergaard M: Direct signaling from astrocytes to neurons in
cultures of mammalian brain cells. Science 1994, 263:1768-
1771.

24. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ: Glutamate
induces calcium waves in cultured astrocytes: long-range glial
signaling. Science 1990, 247:470-473.

25. Petravicz J, Fiacco TA, McCarthy KD: Loss of IP3 receptor-
dependent Ca2+ increases in hippocampal astrocytes does
www.sciencedirect.com 
not affect baseline CA1 pyramidal neuron synaptic activity. J
Neurosci 2008, 28:4967-4973.

26. Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ,
Khakh BS: TRPA1 channels are regulators of astrocyte basal
calcium levels and long-term potentiation via constitutive D-
serine release. J Neurosci 2013, 33:10143-10153.

27. Shigetomi E, Kracun S, Sofroniew MV, Khakh BS: A genetically
targeted optical sensor to monitor calcium signals in
astrocyte processes. Nat Neurosci 2010, 13:759-766.

28. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A,
Kettenmann H: Microdomains for neuron-glia interaction:
parallel fiber signaling to Bergmann glial cells. Nat Neurosci
1999, 2:139-143.

29. Nett WJ, Oloff SH, McCarthy KD: Hippocampal astrocytes in situ
exhibit calcium oscillations that occur independent of
neuronal activity. J Neurophysiol 2002, 87:528-537.

30. Takata N, Hirase H: Cortical layer 1 and layer 2/3 astrocytes
exhibit distinct calcium dynamics in vivo. PLoS One 2008,
3:e2525.

31. Nimmerjahn A, Mukamel EA, Schnitzer MJ: Motor behavior
activates Bergmann glial networks. Neuron 2009, 62:400-412.

32.
�

Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K,
Hirase H: Astrocyte calcium signaling transforms cholinergic
modulation to cortical plasticity in vivo. J Neurosci 2011,
31:18155-18165.

Together with Chen et al. this paper demonstrates that astrocytes in
anesthetized mice exhibit IP3-dependent calcium transients in barrel
cortex following electrical stimulation of cholinergic neurons in the
nucleus basalis of Meynert (NBM). The authors provide evidence
that pairing whisker deflection with NBM stimulation potentiates
excitatory synapses by inducing the release of D-serine from astro-
cytes.

33.
�

Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M:
Nucleus basalis-enabled stimulus-specific plasticity in the
visual cortex is mediated by astrocytes. Proc Natl Acad Sci USA
2012, 109:E2832-E2841.

Together with Takata et al., this paper demonstrates that electrical
stimulation of the nucleus basalis of Meynert (NBM), where cholinergic
neuron cell bodies are located, triggers widespread calcium transients in
cortical astrocytes in anesthetized mice. In IP3R2 conditional knockout
mice, synaptic potentiation induced by pairing visual stimulation with
NBM electrical stimulation was absent, suggesting that astrocyte calcium
signaling plays a key role in potentiating stimulus-specific visual
responses in excitatory neurons.

34. Haustein MD, Kracun S, Lu XH, Shih T, Jackson-Weaver O,
Tong X, Xu J, Yang XW, O’Dell TJ, Marvin JS et al.: Conditions and
constraints for astrocyte calcium signaling in the hippocampal
mossy fiber pathway. Neuron 2014, 82:413-429.

35.
�

Gee JM, Smith NA, Fernandez FR, Economo MN, Brunert D,
Rothermel M, Morris SC, Talbot A, Palumbos S, Ichida JM et al.:
Imaging activity in neurons and glia with a Polr2a-based and
Cre-dependent GCaMP5G-IRES-tdTomato reporter mouse.
Neuron 2014, 83:1058-1072.

This paper introduces a conditional mouse line that enables expres-
sion of both GCaMP5G and tdTomato in the same cell when Cre or
CreER is expressed, providing both morphological information and a
readout of calcium dynamics. When bred to GFAP-CreER mice, the
authors successfully detected sensory evoked calcium signals in the
processes and somata of astrocytes in the barrel cortex of anesthe-
tized mice.

36. Schipke CG, Haas B, Kettenmann H: Astrocytes discriminate
and selectively respond to the activity of a subpopulation of
neurons within the barrel cortex. Cereb Cortex 2008, 18:2450-
2459.

37. Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, Kang J, Takano T,
Nedergaard M: Astrocytic Ca2+ signaling evoked by sensory
stimulation in vivo. Nat Neurosci 2006, 9:816-823.

38.
��

Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE:
Norepinephrine controls astroglial responsiveness to local
circuit activity. Neuron 2014, 82:1263-1270.

This paper reports generation of conditional GCaMP3 mice (R26-lsl-
GCaMP3), which are used to show that locomotion induces calcium
Current Opinion in Neurobiology 2015, 32:95–106

http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0700
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0700
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0705
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0705
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0705
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0705
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0705
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0710
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0710
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0710
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0715
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0715
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0715
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0720
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0720
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0720
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0720
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0725
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0725
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0725
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0730
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0730
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0735
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0735
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0735
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0735
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0740
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0740
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0740
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0740
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0745
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0745
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0745
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0745
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0745
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0750
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0750
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0750
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0755
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0755
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0755
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0755
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0760
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0760
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0760
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0765
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0765
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0765
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0770
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0770
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0770
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0775
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0775
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0775
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0780
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0780
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0780
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0785
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0785
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0785
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0785
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0785
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0790
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0790
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0790
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0790
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0795
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0795
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0795
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0800
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0800
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0800
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0800
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0805
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0805
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0805
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0810
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0810
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0810
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0815
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0815
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0820
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0820
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0820
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0820
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0825
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0825
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0825
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0825
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0830
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0830
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0830
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0830
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0835
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0835
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0835
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0835
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0835
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0840
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0840
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0840
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0840
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0845
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0845
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0845
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0845
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0850
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0850
http://refhub.elsevier.com/S0959-4388(15)00024-0/sbref0850


104 Large-scale recording technology
elevation in visual cortex (V1) astrocytes due to the release of norepi-
nephrine and activation of a1-adrenergic receptors. The authors show
that norepinephrine enhances the sensitivity of astrocytes to local
increases in neural activity, and use dual-fiber photometry to demonstrate
that locomotion triggers widespread activation of astrocyte networks in
both the cerebellar and cerebral cortex.

39. Schummers J, Yu H, Sur M: Tuned responses of astrocytes and
their influence on hemodynamic signals in the visual cortex.
Science 2008, 320:1638-1643.

40. Hoogland TM, Kuhn B, Göbel W, Huang W, Nakai J, Helmchen F,
Flint J, Wang SS: Radially expanding transglial calcium waves
in the intact cerebellum. Proc Natl Acad Sci USA 2009,
106:3496-3501.

41. Newman EA, Zahs KR: Calcium waves in retinal glial cells.
Science 1997, 275:844-847.

42. Mathiesen C, Brazhe A, Thomson K, Lauritzen M: Spontaneous
calcium waves in Bergmann glia increase with age and
hypoxia and may reduce tissue oxygen. J Cereb Blood Flow
Metab 2013, 33:161-169.

43.
�

Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L,
Wang F, Nedergaard M: Alpha1-adrenergic receptors mediate
coordinated Ca2+ signaling of cortical astrocytes in awake,
behaving mice. Cell Calcium 2013, 54:387-394.

Together with Paukert et al. this paper demonstrates that sensory-evoked
large-scale astrocytic calcium activity in the cortex of awake, head-
restrained mice depends on noradrenergic receptor activation. Using
in vivo pharmacology and whisker or air-puff stimulation, the authors link
norepinephrine-evoked calcium changes in astrocytes to a1-adrenergic
receptor activation.

44. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW:
Imaging large-scale neural activity with cellular resolution in
awake, mobile mice. Neuron 2007, 56:43-57.

45. Beierlein M, Regehr WG: Brief bursts of parallel fiber activity
trigger calcium signals in Bergmann glia. J Neurosci 2006,
26:6958-6967.

46. Newman EA: Propagation of intercellular calcium waves in
retinal astrocytes and Muller cells. J Neurosci 2001, 21:2215-
2223.

47. Bekar LK, He W, Nedergaard M: Locus coeruleus alpha-
adrenergic-mediated activation of cortical astrocytes in vivo.
Cereb Cortex 2008, 18:2789-2795.

48. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA,
Huang ZJ, Stryker MP: A cortical circuit for gain control by
behavioral state. Cell 2014, 156:1139-1152.

49. Matyash V, Kettenmann H: Heterogeneity in astrocyte
morphology and physiology. Brain Res Rev 2010, 63:2-10.

50. Verkhratsky A, Hoppe D, Kettenmann H: K+ channel properties
in cultured mouse Schwann cells: dependence on
extracellular K+. J Neurosci Res 1991, 28:210-216.

51. Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB,
Xu C: In vivo three-photon microscopy of subcortical
structures within an intact mouse brain. Nat Photonics 2013,
7:205-209.

52. Kobat D, Horton NG, Xu C: In vivo two-photon microscopy to
1.6-mm depth in mouse cortex. J Biomed Opt 2011, 16:106014.

53. Cheng LC, Horton NG, Wang K, Chen SJ, Xu C: Measurements of
multiphoton action cross sections for multiphoton
microscopy. Biomed Opt Express 2014, 5:3427-3433.

54. Helmchen F, Denk W: Deep tissue two-photon microscopy. Nat
Methods 2005, 2:932-940.

55. Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW: Functional
imaging of hippocampal place cells at cellular resolution
during virtual navigation. Nat Neurosci 2010, 13:1433-1440.

56. Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA,
Barretto RP, Ko TH, Burns LD, Jung JC, Schnitzer MJ: High-
speed, miniaturized fluorescence microscopy in freely moving
mice. Nat Methods 2008, 5:935-938.
Current Opinion in Neurobiology 2015, 32:95–106 
57. Kuga N, Sasaki T, Takahara Y, Matsuki N, Ikegaya Y: Large-scale
calcium waves traveling through astrocytic networks in vivo. J
Neurosci 2011, 31:2607-2614.

58. Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wölfel M,
McCormick DA, Reid RC, Levene MJ: Chronic cellular imaging of
entire cortical columns in awake mice using microprisms.
Neuron 2013, 80:900-913.

59. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El
Gamal A, Schnitzer MJ: Long-term dynamics of CA1
hippocampal place codes. Nat Neurosci 2013, 16:264-266.

60. Burda JE, Sofroniew MV: Reactive gliosis and the multicellular
response to CNS damage and disease. Neuron 2014, 81:229-
248.

61. Komiyama T, Sato TR, O’Connor DH, Zhang YX, Huber D,
Hooks BM, Gabitto M, Svoboda K: Learning-related fine-scale
specificity imaged in motor cortex circuits of behaving mice.
Nature 2010, 464:1182-1186.

62. Huber D, Gutnisky DA, Peron S, O’Connor DH, Wiegert JS, Tian L,
Oertner TG, Looger LL, Svoboda K: Multiple dynamic
representations in the motor cortex during sensorimotor
learning. Nature 2012, 484:473-478.

63. Peters AJ, Chen SX, Komiyama T: Emergence of reproducible
spatiotemporal activity during motor learning. Nature 2014,
510:263-267.

64. Masamizu Y, Tanaka YR, Tanaka YH, Hira R, Ohkubo F,
Kitamura K, Isomura Y, Okada T, Matsuzaki M: Two distinct
layer-specific dynamics of cortical ensembles during learning
of a motor task. Nat Neurosci 2014, 17:987-994.

65.
��

Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G,
Galimi F, Huitron-Resendiz S, Pina-Crespo JC, Roberts AJ,
Verma IM et al.: Astrocytes contribute to gamma oscillations
and recognition memory. Proc Natl Acad Sci USA 2014,
111:E3343-E3352.

This paper shows that conditional expression of tetanus neurotoxin
(TeNT) in astrocytes to inhibit exocytosis reduces cortical gamma oscilla-
tions in the 20–40 Hz range in awake mice. Mice with this manipulation
also had impaired novel object recognition memory, but working memory
and fear conditioning were unaffected. Synaptic function was also not
affected by expressing TeNT in astrocytes.

66. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J,
Christensen DJ, Nicholson C, Iliff JJ et al.: Sleep drives
metabolite clearance from the adult brain. Science 2013,
342:373-377.

67. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T,
Haydon PG, Frank MG: Astrocytic modulation of sleep
homeostasis and cognitive consequences of sleep loss.
Neuron 2009, 61:213-219.

68.
�

Slezak M, Grosche A, Niemiec A, Tanimoto N, Pannicke T,
Münch TA, Crocker B, Isope P, Härtig W, Beck SC et al.:
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