Immune Cell Modulation of Oligodendrocyte Lineage Cells

Chronic demyelination and the concomitant loss of trophic support and increased energy demands in axons are thought to contribute to neurodegeneration in a number of neurological diseases such as multiple sclerosis (MS). Adult oligodendrocyte precursor cells (OPCs) play an important role in these demyelinating diseases by generating new myelinating oligodendrocytes that may help limit axonal degeneration. Thus, promoting the differentiation of OPCs and functional integration of newly generated oligodendrocytes is a crucial avenue for the next generation of therapies. Evidence to date suggests that the immune system may both positively and negatively impact OPC differentiation and endogenous remyelination in disease. Inflammatory cytokines not only suppress OPC differentiation but may also directly affect other functions of OPCs. Recent studies have demonstrated that OPCs and oligodendrocytes in both human multiple sclerosis lesions and mouse models of demyelination can express an immunogenic transcriptional signature and upregulate antigen presenting genes. In inflammatory demyelinating mouse models OPCs are capable of presenting antigen and activating CD8 + T cells. Here we review the evidence for this new role of oligodendroglia as antigen presenting cells and how these inflammatory OPCs (iOPCs) and inflammatory oligodendrocytes (iOLs) may influence myelin repair and other disease processes.

Oligodendrocyte Development and Plasticity.

Oligodendrocyte precursor cells (OPCs) originate in the ventricular zones (VZs) of the brain and spinal cord and migrate throughout the developing central nervous system (CNS) before differentiating into myelinating oligodendrocytes (OLs). It is not known whether OPCs or OLs from different parts of the VZ are functionally distinct. OPCs persist in the postnatal CNS, where they continue to divide and generate myelinating OLs at a decreasing rate throughout adult life in rodents. Adult OPCs respond to injury or disease by accelerating their cell cycle and increasing production of OLs to replace lost myelin. They also form synapses with unmyelinated axons and respond to electrical activity in those axons by generating more OLs and myelin locally. This experience-dependent “adaptive” myelination is important in some forms of plasticity and learning, for example, motor learning. We review the control of OL lineage development, including OL population dynamics and adaptive myelination in the adult CNS.

Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles.

NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells.

Large-scale recording of astrocyte activity.

Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is crucial for defining their roles in the healthy and diseased CNS.

The blood-brain barrier: an engineering perspective.

It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich’s first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.

Neuron-glia synapses in the brain

The ability to investigate the electrophysiological properties of individual cells in acute brain tissue led to the discovery that many glial cells have the capacity to respond rapidly to neuronal activity. In particular, a distinct class of neuroglial cells known as NG2 cells, which exhibit many of the properties that have been described for glial subtypes such as complex cells, polydendrocytes, synantocytes and GluR cells, express ionotropic receptors for glutamate and GABA. In both gray and white matter, NG2 cells form direct synaptic junctions with axons, which enable transient activation of these receptors. Electrophysiological analyses have shown that these neuron-glia synapses exhibit all the hallmarks of ‘classical’ neuron-neuron synapses, including rapid activation, quantized responses, facilitation and depression, and presynaptic inhibition. Electron microscopy indicates that axons form morphologically distinct junctions at discrete sites along processes of NG2 cells, suggesting that NG2 cells are an overt target of axonal projections. AMPA receptors expressed by NG2 cells exhibit varying degrees of Ca(2+) permeability, depending on the brain region and stage of development, and in white matter NG2 cells have also been shown to express functional NMDA receptors. Ca(2+) influx through AMPA receptors following repetitive stimulation can trigger long term potentiation of synaptic currents in NG2 cells. The expression of receptors with significant Ca(2+) permeability may increase the susceptibility of NG2 cells to excitotoxic injury. Future studies using transgenic mice in which expression of receptors can be manipulated selectively in NG2 cells have to define the functions of this enigmatic neuron-glia signaling in the normal and diseased CNS.

4-Carboxymethoxy-5,7-dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices.

Caged neurotransmitters are useful photochemical tools for selective stimulation of synapses and other transmitter receptors. Before illumination, the caged compound is biologically inert. Photolysis breaks a covalent bond, liberating the caged neurotransmitter. Release can be rapid, so the resultant synaptic stimulation can mimic a natural one (Matsuzaki et al., 2001). Uncaging does not replace traditional electrode stimulation; rather, it is a useful complement to it for several reasons: (1) a single transmitter is normally photoreleased, (2) stimulation of voltage-gated ion channels is not required for transmitter release, (3) receptors at many synapses can be activated simultaneously according to the area (or volume) of illumination, (4) unnatural amino acids can be photoreleased, and (5) subquantal or supraquantal neurotransmitter release is feasible.

Synaptic communication between neurons and NG2+ cells

Chemical synaptic transmission provides the basis for much of the rapid signaling that occurs within neuronal networks. However, recent studies have provided compelling evidence that synapses are not used exclusively for communication between neurons. Physiological and anatomical studies indicate that a distinct class of glia known as NG2(+) cells also forms direct synaptic junctions with both glutamatergic and GABAergic neurons. Glutamatergic signaling can influence intracellular Ca(2+) levels in NG2(+) cells by activating Ca(2+) permeable AMPA receptors, and these inputs can be potentiated through high frequency stimulation. Although the significance of this highly differentiated form of communication remains to be established, these neuro-glia synapses might enable neurons to influence rapidly the behavior of this ubiquitous class of glial progenitors.

Synaptic signaling between neurons and glia.

Rapid signaling between vertebrate neurons occurs primarily at synapses, intercellular junctions where quantal release of neurotransmitter triggers rapid changes in membrane conductance through activation of ionotropic receptors. Glial cells express many of these same ionotropic receptors, yet little is known about how receptors in glial cells become activated in situ. Because synapses were thought to be the sole provenance of neurons, it has been assumed that these receptors must be activated following diffusion of transmitter out of the synaptic cleft, or through nonsynaptic mechanisms such as transporter reversal. Two recent reports show that a ubiquitous class of progenitors that express the proteoglycan NG2 (NG2 cells) engage in rapid signaling with glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons through direct neuron-glia synapses. Quantal release of transmitter from neurons at these sites triggers rapid activation of aminomethylisoxazole propionic acid (AMPA) or GABA(A) receptors in NG2 cells. These currents exhibit properties consistent with direct rather than spillover-mediated transmission, and electron micrographic analyses indicate that nerve terminals containing clusters of synaptic vesicles form discrete junctions with NG2 cell processes. Although activation of AMPA or GABA(A) receptors depolarize NG2 cells, these receptors are more likely to serve as routes for ion flux rather than as current sources for depolarization, because the amplitudes of the synaptic transients are small and the resting membrane potential of NG2 cells is highly negative. The ability of both glutamate and GABA to influence the morphology, physiology, and development of NG2 cells in vitro suggests that this rapid form of signaling may play important roles in adapting the behavior of these cells to the needs of surrounding neurons in vivo.